Optimal smoothing in nonparametric mixed-effect models
نویسندگان
چکیده
منابع مشابه
Optimal Smoothing in Nonparametric Mixed-Effect Models
Mixed-effect models are widely used for the analysis of correlated data such as longitudinal data and repeated measures. In this article, we study an approach to the nonparametric estimation of mixed-effect models. We consider models with parametric random effects and flexible fixed effects, and employ the penalized least squares method to estimate the models. The issue to be addressed is the s...
متن کاملGeneralized Nonparametric Mixed-Effect Models: Computation and Smoothing Parameter Selection
Generalized linear mixed-effect models are widely used for the analysis of correlated nonGaussian data such as those found in longitudinal studies. In this article, we consider extensions with nonparametric fixed effects and parametric random effects. The estimation is through the penalized likelihood method, and our focus is on the efficient computation and the effective smoothing parameter se...
متن کاملBayesian nonparametric mixed random utility models
Wepropose amixedmultinomial logit model, with themixing distribution assigned a general (nonparametric) stick-breaking prior.Wepresent aMarkov chainMonte Carlo (MCMC) algorithm to sample and estimate the posterior distribution of the model’s parameters. The algorithm relies on a Gibbs (slice) sampler that is useful for Bayesian nonparametric (infinite-dimensional) models. The model and algorith...
متن کاملInference in generalized additive mixed models by using smoothing splines
Generalized additive mixed models are proposed for overdispersed and correlated data, which arise frequently in studies involving clustered, hierarchical and spatial designs. This class of models allows ̄exible functional dependence of an outcome variable on covariates by using nonparametric regression, while accounting for correlation between observations by using random effects. We estimate no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 2005
ISSN: 0090-5364
DOI: 10.1214/009053605000000110